You are probably most familiar with where numb	Bit = binary digit Number base = the number of unique digits used to represent values. the decimal number system, ers are represented with base-10.
There are 10 unique numerals used to represent values. Each digit is 10 times more cignificant then the previous digit	
0,23456789	$\approx 10 \text{ digi}+S$
The hexadecimal system is base-16.	0123456789ABCDEF
The octal number system is base-8.	01234567
The binary number system is base-2.	Ø 1
$\frac{1}{2^{4}} = \frac{1}{2^{3}} = \frac{0}{2^{2}}$	twos ones place place 2' 2 ⁰ Asing by including the base as a subscript
100_2 100_10	100 ₈
Convert Binary to Decimal	Convert Decimal to Binary
	85
Start from the right. $1 \cdot 2^{0} = 1$ $0 \cdot 2^{1} = 0$	 Divide by 2. Write down the remainder. Divide the result by 2 and repeat.
$1 \cdot 2^2 = 4$	Record the remainders from right to left.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85 / 2 = 42 Remainder = 1 42 / 2 = 21 Remainder = 0 21 / 2 = 10 Remainder = 1 10 / 2 = 5 Remainder = 0 5 / 2 = 2 Remainder = 1
The result is the sum of these products. $ + 0 + 4 + 0 + 16 + 0 + 64 + 0 = $	2 / 2 = 1 Kemainder = 0 1 / 2 = 0 Remainder = 1

##