Bit $=$ binary digit
Number base $=$ the number of unique digits used to represent values.
you are probably most familiar with the decimal number system, where numbers are represented with base-10.
There are 10 unique numerals used to represent values.
Each digit is 10 times more significant than the previous digit.
(0,0,2,3ఝ2,6,7,8,9 ≈ 10 digits
The hexadecimal system is base-16.
(0) 0345 G789ABCDEF

The octal number system is base-8.

The binary number system is base -2.

We can denote the number system we are using by including the base as a subscript.

$$
\begin{equation*}
100_{2} \tag{8}
\end{equation*}
$$

Convert Binary to Decimal

$$
01010101
$$

Start from the right.

$$
\begin{aligned}
& 1 \cdot 2^{0}=1 \\
& 0 \cdot 2^{1}=0 \\
& 1 \cdot 2^{2}=4 \\
& 0 \cdot 2^{3}=0 \\
& 1 \cdot 2^{4}=16 \\
& 0 \cdot 2^{5}=0 \\
& 1 \cdot 2^{6}=64 \\
& 0 \cdot 2^{7}=0
\end{aligned}
$$

The result is the sum of these products.

$$
1+0+4+0+16+0+64+0=
$$

Convert Decimal to Binary

$$
85
$$

(1) Divide by 2.
(2) Write down the remainder.
(3) Divide the result by 2 and repeat.

Record the remainders from right to left.
$85 / 2=42 \quad$ Remainder $=1$
$42 / 2=21 \quad$ Remainder $=0$
$21 / 2=10 \quad$ Remainder $=1$
$10 / 2=5 \quad$ Remainder $=0$
$5 / 2=2 \quad$ Remainder $=1$
$2 / 2=1 \quad$ Remainder $=0$
$1 / 2=0 \quad$ Remainder $=1$
1010101

