
÷
- -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

A Class is the blueprint definition of the data and behavior for a
given data type.

An object is a specific instantiation of the class.

- - - - - - - - - - - - - - - - - - - - - - - - - -

- An object contains
-

•• Attributes/ Fields - data values

• Functions - Operations that can be performed on the object, some of
which may access and modify the fields.

- - - - - - - - - - - - - - - - - - - - - - - - - -

*

- • encapsulation Data within classes is self - contained and kept private .
hides implementation details

• inheritance classes may be designed in hierarchies where a parent

class 's code may be reused in the child class.

• polymorphism Objects are processed based on their data type.

Dynamic Polymorphism : A method in a subclass has the same name and

Overriding signature as an inherited method from the superclass .

Defines a behavior specific to a subclass.

Static Polymorphism : Two methods in a class have the same name but

Overloading different parameters .

• abstraction hide unnecessary details from users

- - - - - - - - - - - - - - - - - - - - - - - - -

SOLID principles

Single Responsibility Principle
Every class and method should only have one Open / Closed Principle

- responsibility and should encapsulate that classes & methods should be

responsibility. OPEN for extension (via inheritance)
CLOSED for modification .

Liskov Substitution Principle
Superclass objects should be able to replace

-
its subclass objects without causing an error.

Interface segregation principle
classes should not be forced to implement

interface methods they don't need.
Dependency inversionseparate granular interfaces are preferred.

High level and low level modules should

depend on abstractions. Abstractions should
not depend on details .


