0%

wWe evaluate an algo:-nfhm's performance by coan-l-in
number of operations remﬂvc +0 +he problem s|ze.

Sorting a list with 10,000 clemms will +ake The Problcm Snze would
more +ime +han sor-hng a lis+ with 10 ciements. be -I-he, lcng-rh of the list

We usually use +the variable N +0 denote problem size.

02 oud (bﬁ@°© RNOTATION

”Bis—O\‘ refers +o the upper bound
of +he relatonship between the number
of operations and the problem size.

We are concerned with how large
Oln) the function grows as N increases.

ot logn)

operations

we only reference +he dominant
problem size (N) term 0f +he function. For example —
S5n? becomes O(n?)

O(1) constant+ Time 5" + Tn becomes O(5")
The aigorithm complétes within some
constant, regardless of size.

O(n) Linear Time
The time for +he aigorithm +o

complete scales with +he
probiem size.

e.g. traversing a list

€4g. getters)seHers
type predicates
simple arithmetic

O(logn) Logarithmic Time

roblem is hatved .
The Foiith each 1heration. 0(?", ™) Exponential Time
e.9. binary search Increasing +he problem size by 1
doubles +he time.
O‘MOQ") O(n®), O(®)... Polynomial Time
e.g. Quicksort Usually an ON) aigorithm +hat performs
Merge Sort an Oln) operation for N elementsS.

